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CHAPTER 1

b INTRODUCTION

This report is the result of CENSEI's basic research work on critical
. issues concerning system engineering and integration of spread spectrum
E systems, in concert with applications of Qistributed systems architectures, to
} . provide information distribution for C2 information management systems
operating in a communications-bounded environment. In a communications-
bounded environment, subscribers on a given network are transmitting at
i maximum subscriber capacity. Network capacity is not the simple sum of
. subscriber capacities. Rather, it can be a complex function of the number of
subscribers, their topological distribution, and their offered traffic load.

The RF resource, however, is limited, and saturation, which translates to
self-jamming, will result as more subscribers are operating, or as more
capacity is allocated and utilized by each subscriber. The long term goal is
to derive a meaningful portrayal of performance degradation due to self-
jamming in spread spectrum system candidates for the Army's survivable C3
network. Such a portrayal will then be used by the Army system engineers to
ensure that network capacity is adequate for given user applications.
Initially, performance degradation was studied for hybrid direct-sequence/
frequency-hop systems. In the course of this study, it became apparent that

performance degradation was also a function of the receiver decision logic,

which is. the subject of this report.

- The spread spectrum communications system which was studied uses an

‘ alphabet of 32 symbols to communicate messages. A symbol is represented by a

T A

. 4




- T ———y ——— TR P W T N YA e LT Faadriait sch el S I A S Y
Eaiam b At SN PO S

sequence of 32 chips. (A chip is a binary (+1,-1) digit which takes on a
value of either +1 or -1.) A sequence of 32 chips is cyclically shifted to
h generate the entire 32-symbol alphabet.

. The system uses a Reed-Solomon code for channel encoding. (The reader is

referred to Macwilliams & Sloane (1] for a discussion on the Reed-Solomon
codes.) An R-S (31,15) code is used to encode 15 information symbols into 31
channel symbols, so that 16 symbols are used for error correction and error

detection purposes. The code allows for forward-error correction if
2e + E <17 (1-1)

where e = the number of symbol errors and E = the number of symbol erasures
within the 3l~-symbol code word. If

2 + E217 (1-2)
then a decoding error will occur,

The probability of a word error (Pw)' or the expected relative frequency
of a word decoding error, where a word is represented by an R~S (31,15) code,
can be formulated using the probability of a symbol error (Pe) and the
probability of a symbol erasure (PB) as independent variables. But PB and Pe

are not independent variables: they are dependent upon the signal-to-noise

ratio (SNR), the modulation technique used, and the threshold setting for the
decision rule used. Nevertheless, constant P, curves as a function of PE: and
P e Can be plotted on log x log graph paper. The set of Pw curves hecomes a

powerful tool when used in conjuction with the PE vs, Pe plot with constant SNR -

- AJ_._‘AAL-
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curves, because by superimposing the curves we can relate SAR to Pw'

Decision rules for detection of spread spectrum signals were
investigated. Decision rules were designed using simple and ratio
thresholding techniques. For each decision rule, the performance of the
detection system in terms of Pp and Pe was analyzed. The obtained data were
used to plot constant SNR curves and constant threshold curves. With the use

of the Pw curves the optimum threshold setting was found for a given SNR.

Orthogonal signalling (FSK) and antipodal signalling (PSK) were

investigated to determine their effects on the performance of the detection

system,

Analog and digital correlations were considered. The performance curves

of analog correlation and digital correlation were compared.

Monte Carlo simulation of the digital detection process using the
threshold decision rule was used to produce the performance data which can be

compared with the results of the analysis.




CHAPTER 2
DETECTION THEORY APPLIED TO 32-ARY ORTHOGONAL SIGNALS

For radio comunications, a transmitted signal becomes corrupted with an
additive gaussian white noise when it reaches its destination. Because a
signal attenuates during its propagation, signal degradation due to the
presence of the noise in the signal becomes a problem especially for long
distance transmissions. Because the white gaussian noise is a random process,
the likelihood of a detection error occurring is described in terms of the

probability of an (detection) error.
A received signal is represented by
y(t) = x(t) +n (t) (2-1)

where x(t) is the transmitted signal and nw(t) is the gaussian white noise.
The noise nw(t) is assumed to have the white spectral density

G(f) = N°/2. (2-2)

The receiver operates on the received signal y(t) to determine which of the ——y

symbols yr i=1,2,...,M, were sent.
If W is a symbol belonging to the set
U= {ull uzl ceey PM}' (2-3)

then g is an M-ary symbol that is equivalent to logz(M) bits of information.




The spread spectrum communication system in our study uses 32-ary symbols,

each symbol representing 5 bits of information; 32 chips are used to generate

a signal x, (t) representing y; (for i=1,2,...,32). o

Thirty-two chips are capable of generating 232 different signals;
however, among the 232 prospective signals, only 32 vhich are orthogonal to
each other are chosen. There are various ways of generating 32-ary orthogonal \

signals, and we will explore two of the methods in Chapter 6.

Suppose there exists a set of 32 orthogonal signals described by

L.
X = {x)(t)) %y(t)s euey Xg (t) }e (2-4) L
A set of vectors S
ber.
V= {¢1(t). ¢2(t). cooy ¢32(t)} (2-5)
forms the basis of the vector space 3y of dimension 32 which is spanned by f.;"_
the linearly independent vectors x, (t), X5(t)s eeey Xq5(t). Each signal x,(t) A
is a linear combination of ¢1, ¢2, coes ¢32 such that -
Xp(E) = X4y + Xj005 ¥+ cee + Xi3503, (2-6) o
where X{y? Xyor sees X g, are scalars. The orthogonality of the signals
implies that .
-
<xi'xi> = Es i=1'2' ...'32 (2"78)
<xi,xj> = i#j. {2~7b)
[}
5 -




2.1 Signal Space Formulation

The present discussion of signal space formulation is limited to the case

of having 32-ary orthogonal signals. The reader is referred to Carlson [2]

for a generalized treatment of signal space formulation.

Suppose there are 32 orthogonal signals xl(t), xz(t), ceey x32(t). Then
there exists a signal space %32 containing all of the above signals; C32 is
spanned by an orthonormal basis {¢1(t), Oy (), oees ¢32(t)}. so that

32
x; (t) = E';l X1 8 () (2-8)
where
Xj = <Xio4y> =f.¢; X, (t) #, (t)dt. (2-9)

An additive zero-mean gaussian white noise present in the transmission
medium may not be fully contained in 532, in which case it cannot be fully
described by a linear combination of the orthonormal basis vectors ¢1 t),

¢2(t), ceey ¢32 (t) spanning the signal space C32. But the noise nw(t) can be

described as a sum of two terms, one term representing the component vector
which does belong to C32 and the other term representing the component vector ' E

which does not belong to Z,,. The noise can be represented as 4_ 3
nw(t) = n(t) + ne(t) (2-1¢)

where n(t) is the projection of the vector nw(t) on C32 and ne(t) is the
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irrelevant noise.

The relevant noise n(t) is a linear combination of the basis vectors and

is described by

32
n(t) = (t) (2-11)
£, n
where

Whereas, for the irrelevant noise,
<ne'¢k> = 6 k=1'2'..o32 (2-13)
because ne(t) does not belong to the signal space ?;32.

The detector for the system in our study has a bank of 32 correlators. A
received signal is correlated with 32 seperate locally generated signals so

that

oh
<y,x2> rz
<y,x32> = r32 (2-14)
where L is the output of the k'th correlator.
Note that
y(t) = xi(t) + nw(t) = xi(t) + n(t) + ne(t) (2-15)

L




Therefore, substituting for y(t),

<y,xj> = <xi+n+ne,xj>

J ’ J ! J e' J

<ne,Xj> = @

<y,xj> = <xi,xj> + <n,xj>

<y,xj> = <xi+n,xj>.

Defining z(t) as the projection vector of y(t) on §32.
z(t) = x;(t) + n(t)

and

<y,xj> = <z,xj>.

Assuming that only hard decisions are made, the symbol uj corresponding
to the signal xj(t) to which z(t) lies closest in the signal space [

(2-16a)
(2-16b)

(2-17)

(2-18a)
(2-18b)

(2-19)

(2-20)

32 is

chosen., For z(t) to lie closest to xj(t) the following condition must be

satisfied:

|z-le < [z} all i#j.

(2-21)




If xj (t) is the transmitted signal, then

M NPT

3 2(t) = %,(t) = n(t) (2-22)
R
||z-xj|| = [in}. (2-23)
X
where —
LA
]
I = <«n,m2, (2-24) o
The inner product of the relevant noise with itself is the sum of the ___‘
magnitude squared of the component vectors as follows: ' ﬂ
e
> =nd+n3+ ... +nd (2-25b) MR
where each n, has the following statistical variance: Do

of =En, - Eln,1? (2-26a) '
i, =3 _»
o> =n,%-F."“. (2-26b)
n, i i

i‘i = <'nw_,¢ i‘> (2-27)
and -_—

n, = 14 (2-28)




= 0, (2~29)

g = ni . (2-30)
The n.2 2
term n, ", which can be written as l':[ni ], is analyzed by first
deriving the relationship for E["i"j]‘ E[ninjl is defined as
[ -} L]
Eln;n,) = E[L n,,(€)é (t)dtL nw(l)tbm(l)dl] . (2-31)

But since only nw(t) and nw(l) are random variables E["inj] can be rewritten

as
- «©
etognsl = [ [ Etn (00,0014 (6)0; )aeal. (2-32)

E[nw(t)nw(l)] can be represented as an inner product of nw(t) and nw(l) as

Eln, (t)n, (1)) = <n,(t),n, (1)> (2~33) »
Eln, (t)n,(1)] = <n_(t),n (t=(t=1))>. (2-34) g

Noting that

(2-35) ‘ ’T

Rnw(t-l) = <nw(t) ,nw(t(t-l))>

a new relationship for E[nw(t)nw(l)] is found as follows:

E[nw(t)nw(l)] = Rnw(t-l). (2-36)

17
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The autocorrelation of white noise is

Rnw(‘r) = (No/2)6(‘l'). (2=-37)

Substituting (N°/2)6(t-1) for RN(t-l) in (2-36),

T WY VoS

Eln,(t)n, (1)) = (N /2) §(t-1) (2-38)
h . Furthermore, substituting (N /2)8(t-1) for Eln,(t)n, (1)) in (2-32),
5 ®  ®
: Elnyny] = (NO/Z)L f_ooi(tnju)a(t-l)dtdh (2-39)

Since ¢i (t) and 03.(1) are orthonormal vectors, (2-39) can be simplified as

N /2 f=j
Elnyn.] = °
J 8 i3, (2-49)
We note that for the case of i=j
Eln, %] = niz =N /2, (2-41)

By substituting N°/2 for ? in (2-30) we get

. 2 =
o"i No/z. (2-42)
Note that ng is a statistically independent gausssian variate with

variance N°/2. The probability density function of ng is

P (n,) = (™) Zexpl-ni ) (2-43)

i

which is used to substitute for Pn . Pn ¢ see, P in

1 ™ N3z

11

............




P (n) = Pnl(nl)Pnz(nz)...Pn32(n32) (2-44)

to get
P = (m ) " Cexpt-fnf) ) (2-45)

where
||n|]2 = nl2 + n22 + o0 4 n322. (2-46)

12




2.2 Maximum Likelihood Decision Rule

Given a projection vector z(t), it is possible to choose the signal most

likely to have been transmitted. We impose the condition
p(ujlz) > P(u|2) all i#j (2-47)

which, if satisfied, allows us to decide that “j is the most likely symbol to
have been transmitted.

Using the Bayes' rule
P(y;|2) = P(u)P, (2|1,) /P, (2)  (2-48)
(2~47) is restated as
p(uj)pz(zluj) > p(ui)pz(z|ui) all i#j. (2-49)

Assuming that every symbol has an equal probability of being transmitted,
(2-49) is simplified as

pz(zluj) > P, (z|u)) all i#j. (2-50)

Since z(t) given "i implies

n{t) = z(t) - xi(t) (2-51)
where M is represented by x, (t), Pz(zlui) can be written as
Pz(z|ui) = P (z=x;). (2-52)

Using (2-45) and (2-52) we get

13




P (z[u) = (w0 ) exol-fe—x 17/ ] (2-53)
and using (2-50) and (2-53) we get
exp[~[|z-xj||2/No] > exp[-lz-x.ll 2/No] (2-54)

which is simplifi=al as

Iz-xj“2 < fex ) all it (2-55)

where
“z—xiuz = <z=X 27X (2-56)
Z-X,,Z7X;> = ﬂz"? - 2¢z,x> - "xi”?‘. (2-57)

The energies for the signals z(t) and xi(t) are defined as

E, = R (0) = fz||? (2-58a)

- = 2 —
Exi. = in(O) = Ix°. (2-58b)

Using the above definitions, (2-57) is restated as

<z=X,,Z=X,> = F_ - 2¢z,x.> + E (2-59)
i i z i X.
i
which is =quivalent +-
<z~-X,,2-X,> = F_ = 2¢y,x,> + E {2-
Z-X, 27X, F, YeX, Exi {2-60)
because
< > = Cy- X.> = < >, - 7
Z)X, y-n X, YoX; (2-61) .
14
3
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Bquations (2-55), (2-56), and (2-60) are used to get
<z,xj> - (1/2)2:j > <z,x.> - (1/2)2:i all i#j. (2-62)
But we have a signal set whose 32 orthogonal signals have the property
E, =E,=...= Ejye (2-63)
When (2-63) is considered, (2-62) simplifies to
<z,xj> > <z,xi> all ifj. (2-64)
To choose the symbol most likely to have been sent, the modified decision
function is defined as
Di' = €Z,X> = <y,X;> (2-65)
and “'j is chosen such that

D' > D, all ifj. (2-66)
4

15
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2.3 Decision Rules Utilizing the Erasure Symbols

The detector in our study is capable of declaring symbol erasures. A
symbol erasure is declared when the received signal y(t) has unacceptably
degraded {n signal quality due to the noise present in the tranamission
medium. Expressed in another way, a symbol erasure is declared when the
probability of a symbol error becomes unacceptably high.

For the case of having a detector which is capable of declaring erasures,
the function of the decision rule is not to minimize the P, but to find the
optimum ratio of PB to Pe‘ Unfortunately, the optimum ratio is not fixed, it
is dependent upon SNR, the modulation technique used, and the decisjon rule
used.

The materials subsequent to Chapter 3 will analyze the optimization of
detection performance using different options in the decision rule used,
modulation technique used, and the correlation method used. But we will first

investigate P, as a function of Pg and Pe.

16
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CHAPTER 3

PROBABILITY OF A WORD ERROR

TeTeTn T s e Em—-

The discussion in this chapter is based on a report by Rosenstark and

v Frank [3].

In this chapter, the term word error refers to the decoding error of a

_—

Reed-Solamn (31,15) code. Thirty-one detected symbols, each of which may be
a correct sywbol, a wrong symbol, or an erasure, are processed by the decoder
to generate a word oconsisting of 15 information symbols. The decoded word,

however, can be in error when there exists enough synbol errors ard erasures.

This chapter studies the relationships among PE' P o’ and Pw.

The system in our investigation uses the Reed-Solomn (R-S) coding. The

R-S (31,15) decoder is capable of error-free decoding if

: 2e + E < 17 (3-1)

- where

g

: e = the nuwber of synbol errors, (3-2a)
E = the nuvber of symbol erasures. (3-2b)

A word (oode) error occurs if

22+ E=S8 (3-3a)

where

17




Table 3.1. Same Cavbinations of Errors and Erasures
which Cause Code Word Errors

2e+E=17 2e+E=18 2etE=19 2e+E=20
e E e E e E e E
0 17 0 18 0 19 n 20
1 15 1 16 1 17 1 18
2 13 2 14 2 15 2 16
3 11 3 12 3 13 3 14
4 9 4 10 4 11 4 12
5 7 5 8 5 9 5 10
6 5 6 6 6 7 6 8
7 3 7 4 7 5 7 6
8 1 8 2 8 3 8 4
9 0 9 1 9 2

10 o

Defining €nin 25 the minimum murber of symbol errors required for a word

error to occur, we see fram table 3.1 that
e. =0 (3-4)

for at least S equal to 17, 18, 19, and 20. We will define ®ax 23 the
maximum number of symbol errors for a given value of S. An inspection of
table 3.1 shows that

€ rax = s/2. (3-5a)

It is also apparent that

ey = 1572 (3-5b)

18
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-:-t‘-'_a
where |x|, the floor of x, is defined as the largest integer less than or :
equal to x (the definition appears in Iverson [4]). L"_if:j

When a signal is detected, a symbol decision is made. The decision can R
be correct, be in error, or be declared an erasure., The sum of the number of "'JZ',A ‘
errors and the number of erasures in an R-S (31,15) word cannot exceed the
total number of symbols in the word (there are 31 symbols in an R-S (31,15) T
code word), or :

e+E=3l (3-6) —
which can be restated as
E=<3l -e. 3-7) e
Using (3-3a), the above becomes
E = s - 2e. (3-8) - -
Using (3-7) and (3-8) we arrive at the relationship
e>=S - 3l. . (3-9)
In the above, e must be a non-negative integer, therefore, e min is defined for
two different cases as follows:
s -3 if s > 31 B
e . = o
min a if s =31. (3-10) s
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‘ Referring to (3-6), the maximum possible value of e is 31. By substituting 31

for ©max in (3-5b) we get

max{S} = 2(31) = 62. (3-11)

For a word error to occur, S must be an integer that takes on the following
relationship:

17 =85 < 62. (3-12)

The probability of a word error is defined as

62
P = P(S) {(3-13)
w ;17
where P(S) is
emax
P(S) =E P(SNe=k). (3-14)
=
min

Since €nin in (3-10) exists for two different cases, P(S) also exists for two

different cases as follows:

[ S/2

Y. P(Spe=k) if S=31

k=5-31

P(S) = ﬁ (3-15)
s/2

Y P(Sne=k) if s=31
\ k=0

where substitutions are made for e max and enin Using (3-Sb) and (3-1@).

P(SNle=k) is defined as
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oy o 31 K /31-k\ _S-2k /31-S+k\ ,31-S+k
P(50 e<k) = K) Pe (s-zx) PE (31-S+K) Pe
where
Pe = probability of a symbol error,
PE = probability of a symbol erasure,
Pc = probability of a correct symbol.
Noting that

31-S+k

31-s+k) = 1

(3-16) is simplified as

_ {31\ (31-k\ Kk _S-2k_31-S+k
P(Snesk) = k) (s-Zk PP Fe :
But
(31) (31-k = 311 31k) ¢!
k/ \S- (31-k) 1kl (31-5+k) ! (S-2k)!
(31) (31-k) . 3
k/ \s-2 k! (S=-2k) ! (31-5+k).
and
Pc =1- (Pe+PE).

Using (3-19), (3-28b), and (3-21) we get

k S-2k 31-5+k
pSNesk) = IMPPE ~ [1=(P +P)]
Kt (5-2k) 1 (31-5+k) 1 y
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Using (3-13) and (3-15) we write Pw as

31 s/ 62 5/2
p,= L _L PSOesk) + L L P(Sne=)
$=17 k=8 $=32 k=5-31

where P(SNe=k) is defined by (3-22).

Aoy

(3-23)

Pw as a function of PE: and Pe can be numerically analyzed using (3-22)

and (3-23). The obtained data can be plotted in the form Pg Vs Pe for

constant P v This was done for the values

B, = w2, 1073, ..., 1070

(3-24)

in fig. 3.1. The P curves can be used as a tool to compare the

performances of various decision rules under various detector operating

conditions.
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CHAPTER 4

ANALOG SIGNAL DETECTION Cd

r 4
g B 4
-, r symbol Reed- =
> bank of 32 decision or Solomon | output w
N correlators| . logic [~ (31,15) — o
- . device erasure |decoder .
k) B :
Figure 4.1. Diagram of detector and decoder. —
)
correlator for xa(t) I'——O‘g o
correlator for xl(t) r, -41
e
xo (t) . . !
——————— . - ) "
correlator for X3y (t)}_o ra,

Figure 4.2, 32 correlator detection system. -

Figure 4.1 illustrates the detection and decoding processes considered in

this chapter. The noise corrupted signal y(t) is processed by the bank of 32
correlators illustrated in fig. 4.2. Each correlator produces a correlator T

output tj which is sent to the decision logic device. The device takes the 32

correlator outputs and decides upon a symbol belonging to the set
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U= {ug. By eoer Hyyo erasure}, (4-1)

The decoder receives the symbols until the 31 symbols making up a code
word are received. Forward-error correction is performed on the R-5 (31,15)

code word, and the 15 information symbols are outputted.

Two different decision rules were developed and analyzed. The decision

rules studied are the threshold rule and the ratio rule.

4.1 Threshold Rule

One variation of the threshold rule works as follows: If only one
correlator output equals or exceeds the threshold, then declare the symbol

correspording to the largest correlator output as the received symbol. If the

- above condition is not met, then declare an erasure.

This decision rule has a major flaw because the condition that only one
correlator output must equal or exceed the threshold for a symbol decision to
occur causes the likelihood of an erasure occurring to substantially exceed
the likelihood of a éymbol error occurring for the SNR ranges of our interest.
After reviewing the results of an initial numerical analysis, the analysis of

this decision rule was discontinued.

The second version of the threshold rule, which later proved to yield a
proper balance of symbol erasures and symbol errors, works as follows: If one

or more correlator outputs equal or exceed the threshold, then declare the
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symbol correspording to the largest correlator output as the received symbol.
If either the largest correlator output does not exceed the threshold, or if

we have a draw, then declare an erasure.

Note that the threshold setting is variable. Its variability serves to
control the ratio of Pp to P.. If the incoming signal is weak, or if the SNR
is low, then the threshold should be set relatively low to prevent an
excessive occurrence of symbol erasures. But if the incoming signal is
strong, or the SNR is high, then the threshold should be set relatively high
so that the maximum correlation values which are relatively low can be
declared as erasures. Under the condition of a changing SNR, the threshold
setting must also change to achieve an optimum word error performance. We
will later see that this is not the case for the ratio rule. The distinct
advantage of the ratio rule over the threshold rule is that its optimum ratio

setting stays relatively fixed for the range of SNR of our interest.

The performance for the detection system using the threshold rule for its
decision logic device is analyzed for orthogonal signalling and antipodal
signalling. For an informative discussion on the signalling techniques the

reader is referred to Pasupathy [5].
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4.1.1 Analysis of the Threshold Rule Performance for Orthogonal Signalling

Without going in depth into the correlation analysis we will state that
when an FSK modulated chip signal is correlated with a reference FSK modulated

chip signal, we get

g E, if the chips have the same frequency

g if the chips have different frequencies (4-2)

where r, is the chip correlator output variable and Ec is the energy of the

FSK modulated chip signal.

Suppose a noiseless signal xi(t) is received. Because the signal

consists of 32 modulated chips, the i'th correlator peak output will be

r; = 3ZEC = Es (4-3a)

where r, is the correlator output and Es is the energy of the signal xi(t).
But if xi(t) is correlated by a j'th correlator (where i#j), then the

correlator output will be

L 16E, = (1/2)E_. (4-3b)

A code word 4 consisting of 32 (bipnlar) chips becomes a2 signal xi(t)
when modulated. When ¢4 is correlated with cj (where i#j), 16 chip positions

will have the chips of same polarity and the remaining 1% chip positions will

have the chips of opposite polarity (the reader can verify this by using the
modified maximal-length sequences in fiqure 6.3 or the Welti codes in fiqure

6.5). When ¢4 is correlated with itself, all 32 chip positions will have the ]
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chips of same polarity. Using (4-2) it can be seen that (4-3a) and (4-3b) are

trm -

Given that every signal X4 (t) (for i=@,1,...,31) has an equal probability
of being transmitted, we will assume throughout this report that xﬂ(t) is

transmitted without any loss of generality.

Zero-mean white gaussian noise present in the transmission medium is also
assumed throughout the paper. For orthogonal signalling, Tp is gaussianly
distributed around the mean energy value of E s with variance ESNO/Z. The
other correlator outputs are similarly gaussianly distributed, but the

distributions have the mean value of (1/2)Eg.
To get an erasure we must have

r, < tEs (4-4a)

r; < tE all ifo (4-4b)
where t is the threshold variable and
B<t=1, (4-5)
The probability of an erasure is formulated as
Pg = 01 (1=t)E_/0] {(1-0f (t-1/2)E /0] }>* (4-6)

where Q{x] is the probability that a gaussianly distributed variable X exceeds

the value x (refer to Abramowitz & Stegun [6]).
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A correct decision takes place when

fg =Y (4-7a)

l'i < b i=1'2'ooo'31 (4-7b)
and

y = tE_. (4-8)

The probability of a correct decision is formulated as
1 [ -(y-E8)%/2d° 31
Pe = Jro fcgse {(1-0l (y-E/2)/0]} " dy. (4-9)

Three types of a decision can be made by a decision logic device: a right
decision, a wrong decision, and a decision to declare an erasure, Regardless
of the probability of each event, the probability of any of the three events

occurring is 1, or

l= Pe + PE + Pc. (4-10a)

When PE and Pc are known, the probahility of an error is determined by using

the relationship in (4-10a) as follows:
Pe =] - PE - Pc' (4-16b)
Substituting for PE and Pc in (4-1¢b) using (4-6) and (4-9) we get
P, = 1-01 (1-t)E /0] (101 (t-1/2)E /0)}*!
- (y—Es) 2/ 202

1 [-
s [z (101 ty-F/2) /0 ay. (4-11)
S
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The terms in (4-1l) can be rearranged to yield

P, = Ol (1~t)E /0] [1-(1-01 (t-1/2)E /01 } ]

[ 2 2
'H'_T}o LEse—(y-ES) 729" 110t =k /21 /61 Mley.  (4-12)

For very small values of Q which correspond to small values of Pe we cCan use

the two-term binomial expansion
k
(14x) = 1 + kx (4-13)
in (4-12) to obtain

P, = 31Q( (l-t)Es/olQ[ (t-l/Z)Es/ol

+ J;ilc ft:se-(y-t-:s)z/zozm -2 /20 /0Ny 1t
Noting that
o =JEN/Z (4-15)
and
Es/0 =VEN (4-16)

(4-6), (4-12), and (4-14) are numerically computed. With the obtained data,
Pg vs. Pe for constant values of Es/No (SNR) were plotted in figure 4.3. The
loci of the constant t are also shown. Superimposing the P, curves from
fiqure 3.1 on the above curves enables us to predict the detection system

performance.
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An examination of figure 4.3 reveals that we should set the threshold at
approximately t=0.8 to minimize the word error probability. Furthermore, we
observe that the change in word error probability is minimal as long as 0.7 <
t < #.82, so the threshold can change an appreciable amount before large

changes take place in system performance.
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Figure 4.3. Threshold rule orthogonal signalling
performance curves.
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4.1.2 Analysis of the Threshold Rule Performance for Antipodal Signalling

Without going in depth into the correlation analysis we will state that
when a PSK modulated chip signal is correlated with a reference PSK modulated

chip signal, we get

Ec if the chips have the same polarity

-Ec if the chips have the opposite polarity (4-17)

where r. is the chip correlator output variable and Ec is the energy of the

PSK modulated chip signal.

Suppose a noiseless signal xi(t) is received. Because the signal

consists of 32 modulated chips, the i'th correlator peak output will be

r; = 32Ec = Es (4-18a)

where r, is the symbol correlator output variable and E:S is the energy of the
signal xi(t). But if the j'th correlator correlates the signal xi(t) (where

i#j), the correlator output will be

rj = 0. (4-18b)

A code word ¢4 consisting of 32 (bipolar) chips becomes a signal xi(t)
when modulated. When cy is correlated with cj (where i#3), 16 chip positions
will have chips of same polarity and the remaining 15 chip positions will have
chips of opposite polarity (the reader can verify this by using the modified

maximal-length sequences in figure 6.3 or the Welti codes in figure 6.5).
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when Sy is correlated with itself, all 32 chip positions will have chips of
same polarity. Using (4-17), it can be seen that (4-18a) and (4-18b) are

true.

The probability analysis for antipodal signalling is essentially the same
as the analysis for orthogonal signalling, but the statistical mean value for
5 (for i=1,2,...,31) is zero for antipodal signalling. Without retracing the

derivations we will simply state the necessary relationships as follows:

P, = QL(1-t)E /o] (1QItE /o1 }*! (4-19)
b o ol f‘” -y /26 a 3L 4-20
c o Jee’ s -Qly/sl} " dy (4-20)

Pe = Q(1 t)Es/ol (1 {1-Q[tgs/g]} ]
1 ® _iop 12/ 9q2
s ftE 0B /20° 1 ) otv/611 gy, (-21)
S

Using the definition in (4-16), (4-19) and (4-21) can be numerically
computed. By plotting the curves as was done for orthogonal signalling we are

able to predict the probability of a word error.

The curves derived from the numerical analysis are shown in fig. 4.4. We
see that a threshold setting of t=0.58 yields low word error probabilities.
If t is varied over the range 7.5 < t < 8,62 the effect on word error

probability will be minimal.
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Threshold rule antipodal signalling
performance curves.
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4.2 Ratio Rule

The threshold rule was a good decision rule to implement because the
variable threshold setting allowed for the control over the ratio of the
probability of an erasure to the probability of an error. But we noted that

the optimum threshold setting varies with the SNR of the received signal.

We pursued our investigation to find a decision rule whose optimum
threshold setting stays fixed when the SNR of the received signal varies. The
decision rule that satisfies the requirement is the ratio rule. The ratio
rule works as follows: Take the ratio of the largest correlator output to the
next largest output. If the ratio does not equal or exceed the ratio setting
d, which is a variable which takes on a value greater than 1.0, then declare
an erasure. If the ratio is equal to or greater than d, then declare the

symbol corresponding to the largest correlator output as the transmitted
symbol.

The ratio rule word error performance for analog correlation is analyzed

for orthogonal signalling and antipodal signalling.
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4.2.1 Analysis of the Ratio Rule Performance for Orthogonal Signalling

For the present analysis of the ratio rule performance, (4-2) and (4-3)

hold true.

To get a correct symbol decision, r, must be the largest correlator
output, and it must exceed the next largest correlator output by a factor 4;
Iy is gaussianly distributed around the mean energy value of Es with variance
ESN°/2. The other correlator outputs are similarly gaussianly distributed,
but the distributions have the mean value of (1/2)ES/N°. The probability of a

correct decision is

1 [® —(c-E )2/20° :
p = o= [ B2 ngriesar s/ e, u-22)

c O

An error occurs if any of the 31 correlators, other than the @'th
correlator, gives rise to an output Lyr i=1,2,...,31, which exceeds the second

largest correlator output by a factor d. The probability of this occurring is

- 3L (7 k27726 } 30
Pe = s [_@ e (I Eg (1-01 (c/d-E_/2) /0] } [l-Q[(r/d-Es)/c(J‘li lg;;

To find the probability of an erasure we take the probability of a
correct decision and the probability of an error and express the probability

of an erasure as follows:
Pp=1-P, -P. (4-24)

Note that the integration of a gaussian distribution from minus infinity to

infinity is equal to one. The relationship is expressed as
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_ 1 -(r-E_)"/20 - -
1= m[_@ e s dr. (4-25) -
Using (4-22), (4-24), and (4-25), we get -
g

C L[ e 2d 31
e ra f_m e s (1-(1-Q((r/d-E_/2)/0]} "ldr - P_. (4-26)

W For a very small PE, the two-term binomial expansion in (4-13) can be used to

approximate (4-26) as

31 [® g 1292
P = TS [_Q o~ (TEQ) /20 Q(r/d-E_/2)/a)dr - B_. (4-27)

l-"e is numerically computed using (4-23), and PE is numerically computed

—
using (4-26) for high PE values and (4-27) for low PE values. With the "1
obtained data, PE vS. Pe for constant values of Es/No are plotted in figure
4.5. The loci of constant t are also shown. Superimposing the Pw curves from ;'1."_

ol

figure 3.1 on the above curves, a Pw vs. SNR plot, which enables us to predict

the detection system performance, is generated.

Figure 4.5 shows that the ratio setting of d=1.06 yields low word error
probabilities. We find that the ratio setting is the optimum setting for all
values of Es/No shown in the PE vs Pe graph. If 4 is varied over the range
1.83 < d < 1.13, then the effect on the word error probability will be

minimal.
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Figure 4.5. Ratio rule orthogonal signalling
performance curves. —
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;\f{: 4.2.2 Analysis of the Ratio Rule Performance for Antipodal Signalling

For the present analysis of the ratio rule performance, (4-16) and (4-17)
hold true.

The probability analysis for antipodal signalling is essentially the same
as the analysis for orthogonal signalling, but the statistical mean value for
r (for i=1,2,...,31) is zero for antipodal signalling. Without retracing the
derivations we will simply state the necessary relationships for the

performance analysis as follows

® 2,, 2
P = ,]r:"g [ B 2% o e sact ar (4-28)
d ]531 ST 30 }a 4-29
e “IPro) =€ {1-Q[r/dao] } " (1 (r/d-E ) 1/0) }r (4-29)
1 [ ® —fop 12,92
Pg = 27 Of-ooe (r=fg) /20 [1-{1-Q[r/d01131]dr-9e. (4-30)

Using the definition in (4-16), (4-29) and (4-3¢) can be numerically
computed. By plotting the curves as was done for orthogonal signalling we are
able to predict the probability of a word error.

The curves derived from the numerical analysis of (4-29) and (4-36) are

shown in fig. 4.6. We see that the ratio setting of d=1.18 yields low word

aaa L

error probabilities. The ratio setting is optimum for all values of Es/No

|

shown in the PE vs. Pe graph. If 4 is varied over the range 1.11 < d < 1.28,

then the effect on the word error probability will be minimal.
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Figure 4.6. Ratio rule antipodal signalling
performance curves.
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4.3 Discussion of the Results of the Analog Correlation Analysis

We analyzed the performance of a detection system using the threshold
rule and of a detection system using the ratio rule for orthogonal signalling

and antipodal signalling.

Comparing the performance results of the threshold rule and of the ratio
rule, we £find that the optimum ratio setting for the'tatio rule is relatively
invariant with respect to changes in SNR, whereas we see the optimum threshold
setting for the threshold rule varying with changes in SNR. When the
detection system performance for ratio rule is compared with the performance
for threshold rule the ratio rule performance is slightly better. We can
conclude that for the case of analog correlation, the ratio rule is better

than the threshold rule.

When the detection system performance for orthogonal signalling and for
antipodal signalling are compared, we find that antipodal signalling achieves
the same probability of a word error as orthogonal signalling for 6 dB less
than the SNR required for orthogonal signalling. Therefore, antipodal
signalling proves to be better than orthogonal signalling in terms of

detection system performance.

In this chapter we analyzed the detection system performance for analog
correlation. As seen in fig. 4.2, the symbol detector consists of 32
correlators, each holding a reference signal corresponding to a 32-ary symbol.
Each correlator produces an analog output. The correlator outputs are used by

the decision logic device to make a symbol decision.
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CHAPTER 5

DIGITAL SIGNAL DETECTION

This chapter investigates the detection system performance analysis for
the case of digital correlation. For this case, the received signals are

digitized on a chip~by-chip basis.

The chief advantage to the use of digitization is that it simplifies the
hardware design and implementation. But digitization carries the penalty of a
small performance degradation when compared to the system performance for

analog signal processing.

A block diagram of the digital detection system is shown in fig. S.1.
For the digital detection system, a chip detector precedes the bank of digital

correlators. There are 32 digital correlators, each corresponding to a 32-ary

symbol.

Each symbol is represented by a code of 32 chips. An i'th correlator
correlates the code from the chip detector with its reference code ¢ and
generates the quantized correlator output Ty where ri=-32,3,...,0,...,30,32
ard i=0,1,...,31. Upon completion of the digital correlation process, the
decisi‘on logic device takes the symbol correlator outputs and decides upon a

symbol from the symbol set
U= {pﬂ, Mp? seer H3pe erasure} (5-1)

using either the threshold rule or the ratio rule. The symbol decision is
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sent to the Reed-Solomon decoder. The decoder takes the 31 symbol decisions

comprising an R=S (31,15) code and decodes it into 15 information symbols.

r
r, |decision| symbol R=-S
input chip bank of 32 logic or (31,15) | output
~—— detector correlators] . | device decoder L——-
. erasure

Figure 5.1. Diagram of the digital detection system.
Hard decisions are made by the chip detector for each received chip
signal. For simplicity of analysis, we assume that each hard decision yields

a value of 1 or ~1, depending upon the received chip signal.

Important assumptions are made about the chips making up a symbol. The
32 chips representing the i'th symbol are polar (1,-1) digits comprising a
code word Cyr where i=8,1,...,31. Furthermore, each code word <4 has
orthogonal correlatibn properties. We assume that when a code word is
correlated with itself, there are 32 chip agreements, and when a code word ¢4
is correlated with cj (for i#j), there are 16 chip agreements and 16 chip
disagreements. Since for PSK each chip agreement yields 1 and each chip

disagreement yields -1, correlation of ¢4 with itself will yield an output of

32, and correlation of ¢4 with cj (for i#j) will yield an output of 0,
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The decision rules developed and analyzed for analog correlation in the
last chapter will be analyzed for digital correlation in this chapter. The
results of the digital correlation analysis will be compared with the results
of the analog correlation analysis. Because of the quantization of signals in
digital correlation, we expect some level of performance degradation when

compared to the system performance achieved with analog correlation.

For this chapter, we considered antipodal signalling for modulating the

chips. For orthogonal signalling, we add 3 dB to each constant SNR curve.

S.1 Analysis of Digital Signal Detection

Assuming that the chips comprising a code word are transmitted using
antipodal signalling and the energy in the received signal is Egr the

probability of a chip error occurring at the chip detector is

Pee = o[ VEE/I, ] (5-2)

where Es/32 is the energy of each PSK modulated chip and N°/2 is the power
spectral density of white noise. The relationship in (5-2) is used to
formulate various probability relationships necessary for performance analysis
of digital signal detection. We study the four basic probability analyses

fundamental to our performance analysis.
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Case 1: The probability that ri?.t for if@.

There are 32 digital correlators in the digital detection system. Since
it was assumed that xa(t) is the transmitted signal the correlator outputs are

seperated into two cases: I, and r; (for i=1,2,...,31). Because we are

dealing with orthogonal codes, for noiseless channel, the correlator outputs

have the values

Iy = 32 (5-3a)

ri = ﬁ i=1’2,o-o,310 (5-3b)

We will refer to r, for which i=1,2,...,31 as e and r, for which i=@ as r

i
throughout the report.

The range of r; depends on the 2 to 32 possible chip errors in a 32-chip
sequence, Figure 5,2 illustrates all possible values of ry given k, the

number of chip errors.

We explain fig. 5.2 by using examples. With no error, ry is @ because it
is the sum of 16 1's (sign agreements) and 16 ~1's (si~~ disagreements) in the
chip-by~chip correlation of c; and ¢ys where i#j. with one error, r, can be
~2 when it is the sum of 15 1's and 17 ~1's, or r; can be 2 when it is the
sum of 17 1's and 15 -1's., We can do the same calculations for other k values

(the number of chip errors) and verify the results in fig. 5.2.
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Figure 5.2. Possible values of r, as a function of k.
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The probability that r; is greater than or equal to t can be expressed as

2-t/2}
P(rat) = P[riZtlk]P(k) (5-4)
k=[t/2]
where L32-t/2_l is the floor of 32-t/2, or the greatest integer less than or
equal to 32-t/2, and [t/2] is the ceiling of t/2, or the least integer greater
than or equal to t/2. The probability is equivalent to the sum of the

probabilities of all the coordinate points located at or above the line r;=t.

P(k) is the probability of k errors occurring in a 32-chip code word.
The k errors in a chip sequence can arrange themselves in many different ways,
requiring a combinatorial analysis. P(k) is expressed as

(32 32k _
P(k) = (k) P (1-P,) (5~5)

where Pce is the probability of a chip error as defined in (5-2), and (l-Pce)
is the probability of an error-free chip. Combining (5-4) and (5-5), we
obtain

|32-t/2]

32
= 32-k
Plr2t] = Z:=rt/2"|’[r12tlk] () Poe(1Peg) > (5~6)

The number of chip errors k can be defined as

k = k1 + k2 (5=7)
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where kl is the number of chip errors which cause a positive contribution to
the correlator output and k2 is the number of chip errors which cause a
negative contribution to the correlator output. The reader is referred to
fig. 5.2 to note that chip errors cause only even integral contributions to

the symbol correlator outputs. Using (5~7), (5-6) is expanded to get

16 k
Pleptl =y Y (ko )cnks) PeedPeed ™™
k=[t/2] k,=[(t+2k)/4]
. [32-t/2] 16 (5) (k.is) L) o

k=[t/2] §= [te+2k) /4]

Equation (5-8) was derived by summing the probabilities of the coordinate
points occurring at or above the horizontal t line along the vertical constant
k lines. This approach required us to break the expression into two terms. A
more simplified equation was later derived when the probabilities of the
points occurring at or above the horizontal t line along the diagonal constant

k1 lines were summed. The expression derived is

16 xX.~t/2
g =y R0 (1 e,
ky =[t/2] k=1

This is the final expression describing the probability that r; is greater
than or equal to t. The two independent variables in the equation are t and

Pce.

49

...................

-

aa. a_ & 8 4 .



........

Case 2: The situation in which ra?_t.

We would like to find the probability that Iy is greater than or equal to
t. Note that Iy is 32 when there exist no chip errors. But with each chip
error, the r, value is decremented by 2. The maximum allowable number of chip

errors in a 32-chip code is 32, in which case the r, value is =32, The

a

probability that r, is greater than or equal to t is written as

l16-t/2]
. 32 32k
Pleg2t] = ¥ ( k) P (1-P,,)
k=0

. (5-18)

The two independent variables in (5-10) are t and Pce'

Case 3: The case in which ri=2I.

Referring to figure 5.2, the probability that ry equals an even integral
value 2I is the sum of the probabilities of the points occurring coincident to

the horizontal line ri=21. Along such a line k and k, are related as

1
4k1-2k=21. The probability is expressed as

16
or1 = 16\ ( 16 K-, o (32-2k
Plry=21) )} (kl) (kl-I) (Peg) 1 " (1-Fe) 1 (5-11)
k,=I
1
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Case 4: The case in which r0=21.

S

Finding the probability that ry equals an even integral value 2I is

rather straightforward. Note that the g value in the absence of chip errors

is 32; Ly and k are related as

3 k = (32-r,) /2. (5-12a)
. ) When 2I is substituted for r, in (5-12a) we get .
3 k =16 - I. (5-12b)

The probability that ry equals 2I is

_ _ 32 32—k
But when 16~I is substituted for k we get
- < 1641
Plrg=21) = (,°7) (8, o T ae ) (5-13b)

Having obtained the expressions for P[riZt], P[rozt], P[ri=ZI], and
P[ra=2I] we can proceed to evaluate the error probabilities and erasure

probabilities associated with the threshold rule and the ratio rule. -
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5.2 Threshold Rule Analysis

For a correct symbol decision to occur, Iy must be greater than or equal
to the threshold setting t, and all ry (for i=1,2,44..,31) must be less than
The Since the correlator outputs are even integers, they can be represented
as 2I, I being any integer. The expression for the probability of a correct
decision is given by

16
31
P .= P(r,=2I){1-P(r.221)]"". (5~14)

For an error to occur, one of the r; correlator outputs must be the
largest correlator output and must equal or exceed the threshold t, and the
rest of the correlator outputs, including Loe must be less than the largest
correlator oQtput Qalue. The expression for the probability of an error is

given by

16
Pe =31 L P(r;=2D)[P(r;=< 201 Pp(r,<21). (5-15a)
1=[t/2]

Putting this in terms of the previously defined terms, we obtain

16
P =310  P(r.=21)(1-P(r.= 21)] 32 [1-P(r. = 21)]. (5-15b)
e i i 0

I=[t/2]

The probability of an erasure is formulated by simply taking the
probability of a correct decision and the probability of an error, which are

defined in (5-14) and (5-15b), and subtracting them from 1 as follows
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PE =1~ Pc - Pe (5-16)

PE and Pe are numerically computed and the curves are plotted to predict
the digital detection system performance using the threshold rule. The
performance curves found in fig. 5.3 show that the threshold should be set at
t=12 to yield the lowest word error probability. The threshold setting can be
varied in the range of 16 < t < 14 without substantially affecting the

probability of a word error.

L s

)
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Figure 5.3.

Threshold rule digital correlation performance curves.
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5.3 Ratio Rule Analysis

For a correct symbol decision to occur, Ty must be greater than or equal
to d times the largest r; value, where d is the ratio setting which can take
on any real value that is greater than 1. When errors are introduced, the ry
and ry values must be even integers ranging from -32 to 32. For the ratio
rule, we approximate our analysis by assuming that the probability of 17 or
more chip errors occurring in a code of 32 chips is insignificant. Therefore,
we restrict our analysis to the case where only 16 or fewer chip errors occur.
We make the above restriction because the ratio rule performance analysis
becomes complicated when negative T, values are introduced. We express the
probability of a correct decision as

16
P =) P(r9=21)[1-P(r12d(21))]31. (5-17)

€ 1=0
For an error to occur, one of the r; correlator outputs must be the
largest correlator output which equals or exceeds a value that is d times the
value of the second largest correlator output, where d is the variable ratio
setting which takes on a real value that is greater than 1. The probability
of an error can be ekpressed as

16
P, =3 ) P(r;=21) [1-P (r, Za(21)) 1’ [1-p(r, 2 d (21))) (5-18)

I=0
The analysis of the probability of an erasure is not easy because it
involves many different cases of an erasure, so we define the probability of

an erasure as 1 minus the sum of the prohability of a correct decision and the
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probability of an error, or

Pp=1-P_ -P. (5-19)
. We can numerically compute the PE and Pe equations and plot the curves to

predict the digital detection system performance when the ratio rule is used.
The performance curves are shown in fig. 5.4. The optimum value of d is 1.25
for the SNR range of 8 dB to 11 dB. It is not critical to m»intain this value
-l- of d because low word error probabilities can be obtained for a broad range of

values of d.
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5.4 Discussion of the Results of the Digital Correlation Analysis

Comparing the performance results of the two decision rules, we find the
optimum ratio setting for the ratio rule and the optimum threshold setting for
the threshold rule are relatively invariant with respect to changes in ES/NO.
This was not the case for the threshold rule of analog correlation. For the
digital correlation case studied in this chapter we find no distinct advantage

of one decision rule over the other.

Recall that for the digital correlation case the chip detector outputs
are quantized. This means that the correlation values are quantized into even
integral values ranging from -32 to 32. The quantization of the correlator
outputs also quantizes the values that the threshold setting of the threshold
rule can take on. The threshold setting can have an even integral value which
ranges from # to 32. However, the values that the ratio setting for the ratio
rule can have due to quantization are not easy to see, but we do find discrete
ratio settings which do affect the system performance. For example, the
system performance is not affected unless the ratio setting makes a transition
through any of the following values: 1,4,1.15,1.18,1,.20,1,25,1,33,1.41. Of
course, d can have higher values, but they were not observed because they fell

out of the range of d values of our interest.

There is a noticeahle performance degradation when digital correlation is
used instead of the analog correlation., In terms of SNR, we see less than 1

dB performance degradation when digital correlation is used. The small
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degradation in the system performance is acceptable when we consider that the
_I design and implementation of the digital detector is simpler than the analog

‘,:" detector.
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CHAPTER 6

MONTE CARLO SIMULATION

In Chapter 5 the detection system performance for various cases was
analyzed. The derived equations were numerically analyzed, and the data
obtained were used to plot the performance curves. In this chapter we try to
simulate the operation of the digital detection system and obtain performance
data which can be compared with the data derived from the analysis. The Monte
Carlo simulation method is used to process signals which are noise corrupted.
Antipodal signalling was considered. The decision rule used was the threshold

rule,

6.1 The Simulation Program

The digital detection system shown in fig. 5.1 was chosen for the Monte
Carlo simulation. The operation of the chip detector, the bank of 32
correlators, and the decision logic device using the threshold rule are

modeled by the simulation program,

The system uses 32-chip codes which have orthogonal correlation
properties. The maximal-length sequences and the Welti codes are investigated
for use as the operating codes. The performances for the two cases are
compared to each other and to the performance predicted by the analysis in
Chapter 5. We will later see that the simulation using the modified

maximal-length sequences and the simulation using the Welti codes yield

AN




identical performance results, but the simulation results do not sufficiently

agree with the results obtained from the analysis.

The simulation repetitively processes Xg (t) which is corrupted with
random noise; 10,000 samples of 32 detected chips are collected, and the
symbol decisions are evaluated to find the relative frequencies of symbol

erasures and symbol errors.

6.1.1 Chip Detector

The operation of the chip detector is modeled using the random number

generator. We use the relationship

p_, = o[/F /3N "o] (6-1)

to relate the given SNR to P ce® The random number generator is used to
generate independent chip errors at the relative frequency that approaches the
probability of a chip error for a large number of chip samples. For 10,000
samples of a 32-chip code, it is typical to find the relative frequency of
chip errors accurate to 3 significant digits when compared to the given

probability of a chip error.
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6.1.2 Digital Correlators

An i'th digital correlator takes the 32 detected chips and correlates it
with the reference code Cye The correlation output r; can take on an even
integral value ranging from ~32 to 32. As stated earlier, Xg is assumed to be
transmitted without any loss of generality. Since we are dealing with

orthogonal codes, under the noiseless condition, we should find that

32

<cﬂ,c0>

r, = <ca,c1> = 0

L}
(]

<cﬁ,c2>

. L3

T3y = <CpeCqy°

6.1.3 Decision Logic Device

The decision logic device takes the 32 correlation outputs and makes a
symbol decision using the threshold rule. The threshold rule makes a symbol
decision if the threshold criterion is met, but if the threshold criterion is
not met then an erasure is declared. An erasure is declared when the received
signal has unacceptably degraded in signal quality due to the noise present in

the transmission medium,
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The threshold rule is implemented in the simulation as follows: If the

largest correlator output equals or exceeds the threshold, then ueclare the
symbol corresponding to the correlator as the received symbol. If cither the ‘

largest correlator output does not exceed the threshold or if we have a tie, ok

then declare an erasure. e
Since we know which symbol is sent (we assumed that W is sent throughout
the report), we can take a synbol decision ard determine if the decision was -

correct or if it was in error. By counting the occurrences of errors and %

erasures, we are able to find the relative fregquencies of errors and erasures.

6.2 Codes

Codes are a set of code words used to generate signals. For the spread
spectrum commnication system that we examined, each 32-ary symol is
represented by a code word of length 32. Although the actual codes used are
psuedo-orthogonal, for simplicity of analysis, we assume codes with orthogonal

correlation properties.

The two codes investigated are the maximal-length sequences and the Welti

coxles, The ondes were used to simulate the system operation and obtain the

performance data. The data were used to plnat the performance curves.
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6.2.1 Maximal-Length Sequences

In this section, a methodology for producing maximal-length sequences of

length 31, each having the periodic correlation function

:*‘.-_1_
3 =0 S
om = {-1 40 (6-2) s
is discussed. The maximal-length sequences are then modified to yield codes o 1
of 32 chips having the orthogonal correlation properties. If the reader is .-A,":
interested in a general discussion of binary maximal-length sequences, then L
.
the reader is referred to Bhargava, Haccoun, Matyas, and Nuspl {7]. -
Maximal-length sequences, or m-sequences, can be generated by a linear ‘_t..-‘;
w3
feedback shift-register generator (LFSRG). Given an m-stage LFSRG, a set of 2]
1
maximal-length sequences of length N can be generated, where RN
:
N=2" -1, (6-3)
.
]
Although we would like to get 32-ary code words, (6-3) tells us that this is e
not possible. We can take the next best choice of generating 3l-ary code
words. As it turns out, it is possible to modify the maximal-length
sequences so that we can obtain 32-ary code words with orthogonal correlation '-—-—-
properties.
To get a set of maximal-length sequences of length 31, a 5-stage LFSRG |
must be used. We use the equation, -
2 3 4 5
h(x) = ha + hlx + hzx + h3x + h4x + hsx (6-4a)
L
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i where h(x) is the associated polynomial of the shift register with feedback —
E coefficients (ho'hl""'hs)' If the feedback coefficients are defined as 1
r\ hg=1, h;=8, h,=1, h,=0, h,=8, hc=1, corresponding to the entries in the
: connection vector (101001) for a S-stage shift register, the equation can be ——-J
simplified as ]
h(x)= 1 + x> + x°. (6-4b) ]
—
The 5-stage LFSRG modeled by (6-4b) is shown in figure 6.1. The initial state "]
is assumed to be (10000), but any set of 5 binary digits that is not (6000¢)
can be used. The output from the last stage of the shift register is used to .__j
sequentially extract maximal-length sequences. ~
e —
h, o
Figure 6.1. 5-Stage Linear Feedback Shift-Rejister Generator. j
D
]
A sample maximal-length sequence is found in fig. 6.2a. A second P
maximal-length sequence is found in fig. 6.2b. Each maximal-length sequence “1
generated by an LFSRG is a cyclical shift of another. In order to have a |
binary (+1,-1) chip sequence, we convert all 0's into -1's. The binary (1,() o
sequence in fig. 6.2a becomes the binary (+1,-1) sequence in fig. 6.2c, and T
the binary (1,0) sequence in fiq. 6.2b becomes the binary (+1,-1) sequence in
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i fig. 6.2d. The periodic correlation function for the binary (+1,-1) sequence
is given by

- . )31 =0
" 8(r) = { -1 40 (6=5)

2901010111011 0060111110011010010

a. A sample maximal-length sequence of length 31.

201010111611 0001111100110100100

b. Another maximal-length sequence of length 31.

-1-1-11-11-1111-111-1-1-11111 1-1-11 1-1 1-1-1 1-1

C. A binary (+1,-1) sequence obtained from the sequence in fig. 6.2a.

-1-11-11-1111-111-1-1-11111 1-1-11 1«1 1=1-] 1-1-1

d. A binary (+1,-1) sequence obtained from the sequence in fig. 6.2b.

11-1-1-1-1-111-1-1 1-2 1 1~11111-1 1-1 1-1-1-]1 1-1-1 1

e. A sequence of chip correlation outputs. Q:T'-':_:;
' s
Figure 6.2. Maximal-Length Sequences of Length 31. -
Thirty-one maximal-length sequences are shown in fig. 6.3a. Each v
—

sequence can be used to represent a 3l-ary code word. To generate 32-ary
codes with orthogonal correlation properties, we append the digit -1 to each o

.................................
PSS
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of the 31 sequences, and we add the 32nd sequence, which consists of 32 1's,
to the set of 31 sequences. The 32-ary orthogonal codes are illustrated in
fig. 6.3b. The code words in fig. 6.3b have orthogonal correlation properties
as follows:

a. When a code word ¢, is correlated with itself, we get r;, = 32,

i

where r, is the correlation output of the i'th correlator.

i

b. When a code word ¢, is correlated with a code word c:j

i
(where i#j), we get r; = a.

-1-1-11-11-1111-111-1-1-11111 1-1-1 1 1-1 1-1-1 -1
-1-11-11-1111-111-1-1-11111 1-1-11 1-1 1-1=1 1-1-1

-l1-1-1~11-11-1111-111-1-1~111111-1-111-1 1-1-11

a. Maximal-length sequences of length 3l.

-1=1-1 1-1 1=l l11-1-111-1 1-1-1 1-1-1
-1-1 1~1 1«1 1 1-1-1 1 1-1 1=1-1 1-1-1-1

. . L]

~l=l~]~] 1-1 1-1 11 1~1 -111111-1-11
111111111111 111111111

b. 32-ary orthogénal codes.

Figure 6.3. Two Sample Codes.

The codes of length 32 in fig. 6.3b are used in the Monte Carlo
simulation to produce the signals representinn the 32-ary symbols. ——
Performance data are obtained for 14,000 samples of noise corrupted signals.

The performance curves derived from the data are shown in fig. 6.4,




S

~ Figure 6.4. Monte Carlo simulation of digital correlation -
using the maximal-length sequences. —T
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Figure 6.5.

Simulation
curve

Calculation

curve

Comparison of the simulation and calculation
curves.,
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Figure 6.5 shows that the simulation performance is worse than the performance
predicted by the analysis by about -~1/2 dB. Because of this difference in the

performance results, we've investigated the use of another orthogonal code.

N
i 6.2,2 Welti Codes
! " The Welti codes [8] have orthogonal correlation properties. The codes
Fhf-.' are generated as follows: Let D':' represent the k'th code word of length 21:
Dl=(A:B) (6-6)
where the word is divided into sets of lengths zi"l. From this word the
following are obtained:
D:H‘-(A:B:A:E) (6-7)
pi*tli - (A:B:R:B) (6-8)
k+2 : B: A
where X = complement of x. For example,
Dp = (1 1)
1
Dl = (1-1)
Thus
2 = -
Dﬂ = (1 1 1-1)
2 _ - .
Dy=(1 1-1 1)
»‘1
7
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=(1 1-1 1-1-1-11)
=(1-1 11 1-~1-1-1)
=(1~-111-1111)

~J W MUW U'IUN t-pu a\ow Nuw buw ch

=(1=-1=-1-1 1-111)

>}

(l-1-1-1-1 1-1-1)

Similarly, we can generate words of length 32. A Welti codes generator

'g, Di’, ese 4 Dg? is implemented in the Monte Carlo

which generates the words D
simulation program. The set of Welti codes of length 32 is shown in figure

6. 6.

Results were obtained from the Monte Carlo simulation using the Welti

codes. With the obtained data, P, vs. Pe for constant values of l'-:s/N° were

E
plotted in figure 6.7. The loci of the constant t are also shown. The P,

curves from figure 3.1 were superimposed on the above curves to generate a Pw

vs. SNR plot, which enables us to predict the detection system performance.

71




IR 0T

*Z€ Y3buaT 3JO SIPOO IFITM *9°9 ainbrg

= 1=1 t-¢ ¥ T 1«1 ¢ t=13 ¢ ¥ ¢ t=t=1=af =1 YT § Y« (e (-1 = (- 1= (-1 s tf #0OD )
T t=t=t=F=1 t-1=1T-1 1T T tel te ol f(=1(c o (=t=7 (-~ (~1~-1 1-°07 ¢ s O0E opod A
1 7T ¢t teteotal tot=1=-9=17 t=T7~171 1=1 t ¢ Y= f=tf=7¥ -1 U ¥ -1 7 1-°% = §2 epod .
=17 = T1=1 (T« l«t=1 T=1 T T %= 1= Tt P« 11 f=Y=T=-1=1 {«1-T7-1 1 Y- = §Z #poOd 1
T T t-1 1 1 ¢t t-t=-1=1%¢ t-191 t ¢ (-7 ¢ t-¢% ¢ ¢ ¢ ¥-°0¢ ' §-°0 Q= ¥~ (=1 = 22 ®pOd iy
1«1 ¥ t 1-7 (=17 V=T« J=l=1 («(==1 ¢ T t=-17 (-3-1-T7¥ 1 T ¥ -1 1 = 92 epod .
I+ 1=t=1 (=%«17 =7 1T ¥ teleTtlatl {« (=Tl (=Tl I~1=1=-1-1 ¥ T (=-°% = §2 &rod 5
T =3 1T ¢ t=f=1=1=F {«Tel (=1(=1-¢ -7 ¥ ¢ C=(-%Y¢-7 t-19 ¢ (-0 ¢ ¢ = &2 epoOd .
T ¥ t-1 t-7-1-7 17 ¢ -7 v 7 ¥ (-7 1 1=7 Y=« t=3=707 Y= 1«71 %= 7= 7= Y- % s €7 op0D .:4
-1 v 7T ¢* -1 ¥ t-¢¥ ¢ 1T -1 (~({~-%1=-1 7T T 1 1=-171 T ¥ (= 1=1=-31 Y-707 ¢ = 22 ¢poOd Y
= t=%=-17T T ¢ =17 {et=%t~1 {~t=1 {«feft=¢%t-1¥7 T ¥ -7 ¢ ¢ ¥ t-131 1 1-7% = 12 ®#poO)> ™~ 1
Tt t-1 v -7 7 v 1 -7 7T ¥ ¥=9%~1-7 ¥=-7 ¥ -1 ¥ ¥ (-7 (= t-t-101 1 7V = 02 ®pOD ~ -
T= =1 (= I=1= -1 1=31=-17 T« ¥ 1 1= (=11 {«olstl=tl=¢TF T t I=1 Y= (= 1=-1%¢ = &7 epcd ¥
T t=1-7%=-1 =171 ¥ 1T (=%~ 1=%=1 {-1(~1 t=(=¢(-1 (-1 ¢ (-0 ¥ ' v t-1 ¢ = FY7 8pCO K
T 1T 1T -1 0¥ T-7 7T ¥ 7 J=o1=%7-1%7 1-7 ¥ 1 -1 T 1«7 (=%t=1=-1 1 ¥ 7I=-17%¢ = L] enod .;
=1 ¥T=1=-1-1T T T (=1 T« (=1 (=« {-T1-°C~7 ¥ T ¥ ¥-1 1 (-¥° TV % = 91 epod ‘]
T t T=1 t=« (el (=721 V7=l f=%3=17 (=T=-107 {-¢ ¥ 1 T-1~-1~707 1~ (- I~ 1~ 1 = ¢1 8POD ug
-1 ¥ 1T 1 1-171 ¢ 1 1=7=17-7 t=17 T 1 %= 3= e ¥~ 7 Y{=(=-1 1~ 7=-1-1 t(=0T ¢ = 4 €0od By
{f=t=-1-17 7 1 t-¢ 1 ¥ ¢ 1-171 ¢ %=1 ¥ ¥ 1 l=efc1=1 {-1 1 1 =131 1 -1 s €1 o8P0 . 4
T t-¢ vt -1 © ¥ %=1 (="1=17-1 1T ¥V (-7 (=9« ¢ f=(-(-1~7 {=1-1-07 TV T s 21 ©PpOd nJ
[« 1« l«t=T-1-171 1 7 (=1 l-1=-1=¢ ¢ ¥ -1 ¥ ¢t ¥ =1 ¥ (=% 1= V- (-1 = 11 &pod .
I tT=tetf«t% t-1 ¥ t-9 ¢* t ¥ ¢t=°131 ¥' t-%¢¥ ¢ T (-7 Y=%1=-971-7 T ¥ 1 =717 1 = 01 erod *. ]
Tt 1 t=t1 1 =1 (=1=2t-1 1 T (=1 (=(=f~T1 {0 Yvtl=1(=1-7 T ' (- 7V = & 8pcd n
-1 t=t-t-17 1t 1 1 '-7¥ T -7 7 ¥ ¢ 1-1 ¥ 3 V«(y=1=-1 ¥{-1 1 ¥{-717 © 1t =8 8pod -
f=t=1T =7 1T 1t f=t1=1=1 («t=3=1%=1 1T T (-0 (el=i=1 (=1~1 T« (- 1= (~1% e L &pod v
T 1= 1=1=%«1 (=11 t«%=1«%1 =139 ¢ -7 ¥ ¥V 1 t-a1¥ T ¥ Qe (=-2(-17 T'-191 ¢ = § e8ped -
t vt t-1-1=-17 =1 ¢t t t-17 ¢ -1 §=9=71-17 ¢ T ¥-171 1 ¥ 1 (-1 ¢ 1t=-% e § 0opod .

1=t = (-1 e tetfe (=% (=2t=t-17 ¢ 7T ' 1«1 ¥ §=-7 1 ' (-7 (=1=-1=-%1 T 1V s 4§ 8pcd

T ¥ t«t1 ¥ ¥ ¢ =17 ¢ =t fo el l=tel tofetlatl=1 T Tt (=1 (= =~ 2 s € ©opod L
-t t ¢ =1 t=t=1=-¢7 ¢ ¢ ¢ §=1 ¢ ¥ lefef=1 J=7 ¢ f-¢¥ ¥ ¥ 1 1=-1©¢7 ¢ s 2 epod v
= Y= =¥ f«f=y fetl=fs(-1 T T =1 ¢t ¥ ¥ =17 % (-7 f=1=11=7 1 ¥ $~°1 = [ Opod

1t %=1 ¢ 1t f=¢t=¢t=°7 (=t ¢ t-¢ ¥ ' t=1 (-1~ 1-10 ¥' ¥ v t-¥° ¥ -0 ¢ ¢ s 0 opo3




0'5 pa—

0.1 el

0.02 1 1
0.002 0.01 0.1 0.3

Figure 6.7. Monte Carlo simulation of digital correlation
using the Welti codes.
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The simulation results for the Welti codes agreed very well when compared
to the simulation results for the modified maximal-lenqth sequences. %hen the
simulation results are compared with the results obtained from the performance
analysis, we find that the simulation results deviated by an average of 0.5

dB.
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6.3 Discussion of the Results of the Simulations

Monte Carlo simulation was used to verify the results obtained from the
digital detection system analysis. The operation of a digital detection
system using the threshold rule for its decision logic device was simulated.
Two sets of orthogonal codes were investigated for possible variations in the

performance results.

When the performance results of the Monte Carlo simulation using the
maximal-length sequences are compared with the performance results of the
Monte Carlo simulation using'the Welti codes, the results agreed very well as
expected for any orthogonal codes of length 32. The simulation results,
however, were found to deviate from the results of the analysis by an average
of 6.5 dB. Further investigation revealed that the deviation of the
simulation results from the results of the analysis is due to a slight
statistical correlation among the noise corrupted orthogonal codes. An
in-depth analysis of the statistical behavior of the noise corrupted

orthogonal codes is recommended for future research in this area.
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CHAPTER 7

CONCLUSION

We started our investigation with the analog detection system. There we
investigated the performance of the system which uses the threshold rule and
the system which uses the ratio rule. The ratio rule was found to have an

optimum ratio setting which was invariant with respect to changes in the SNR.

We next investigated the digital detection system. The threshold rule
and the ratio rule were found to have the parameter setting which was
invariant with respect to changes in the SNR. Compared to the performance of

analog detection, the system performance for digital detection was worse by

less than 1 dB.

Finally, Monte Carlo simulaiion of the digital detection system using the
threshold rule was conducted. The results obtained from the Monte Carlo
simulation using the maximal-length sequences agreed with the results obtained
from the Monte Carlo simulation using the Welti codes. An average of #.5 dB
deviation was found when the simulation results were compared with the results
of the digital detection system performance analysis. An in-depth analysis of
the statistical behavior of the noise-corrupted orthogonal codes is

recommended for future research in this area.
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LIST OF ACRONYMS AND SYMBOLS

C2 command and control

C3 command, control, and communications

e number of symbol errors

E number of symbol erasures
. Ec peak chip—-autocorrelation value

Es peak symbol-autocorrelation value

€mnin minimum value of e given S

€ nax maximum value of e given S

ES/No signal-to-noise ratio

FSK frequency-shift keying

LFSRG linear feedback shift-register generator

Pc probability of a correct symbol

Pce probability of a chip error

Pe probability of a symbol error

PE probability of a symbol erasure

P(k) probability of k errors occurring in a 32-chip

: code word

Pw probability of a word error

PSK phase-shift keying };f

R-S Reed-Solomon (code word) ;?i

] a value which is equal to 2e plus E .-
- —

SNR signal-to-noise ratio







